工业互联网平台赋能工程机械行业数字化转型之路

0
2020-07-01 来源: 工业互联网世界

工程机械行业具有设备产品多样、生产过程离散、供应链复杂的行业特征,面临设备价值增值水平不高、供应链资源调配效率低下、金融生态不完善等行业痛点,急需加快基于工业互联网平台的数字化转型步伐,全面提升研发设计、生产制造、供应链管理、远程运维、客户服务等环节的数字化水平。徐工集团、三一重工、中联重科等国内企业和uptake等国外企业以远程运维为切入点,日本小松以智慧施工为切入点,加速推动工程机械行业向设备维护智能化、综合解决方案“交钥匙化”方向加速转型。

 

基于此,我们对工程机械行业基于工业互联网平台进行数字化转型解决方案进行了专题研究,深入剖析了工程机械行业数字化转型趋势、平台应用场景以及业务落地解决方案,同时,该报告对其他高端装备行业数字化转型路径的探讨同样具有借鉴意义。

 工程机械行业数字化转型趋势分析

(一)设备维护按需化

 

传统以预防为主的定期维修无法有效处理潜在或突发的异常故障,也会产生诸多不必要的拆卸和安装,造成过高的设备维护维修费用和额外的磨合损耗,甚至导致新的故障。

 

基于工业互联网平台,在线采集设备性能、状态参数等数据信息,经过一系列的统计算法和分析,可以及时发现设备运行过程中的健康状态和存在的问题,按需求进行设备维护,节省人力物力,保障设备运行效率。

 

(二)备件管理精益化

 

传统的仓储模式能够缓解一定的备件需求压力,但是相应的产生了包括存储空间、物流调配、流转资金等高昂的仓储成本,还需要进行备件管理,耗费人力物力。运用物联网、云计算、大数据等新一代信息技术,加强供应链管理,能够提高备件流通效率,快速响应生产和维修需求,即时调配、按需调配、智能调配,从而提高了生产和维修效率,节省现金流。

 

(三)产融结合在线化

 

由于工程机械设备单价高、行业金融体系不完善等原因,下游中小企业往往存在着资金短缺的问题,严重制约了行业生态的发展。依托工业互联网平台进行设备连接、数据采集、统计分析能力,可以实现制造设备运行过程透明化,有利于金融机构做出实时评估,控制金融风险,在线提供快速融资、贷款服务。

 

(四)解决方案服务化

 

我国工程机械行业的技术、产能、效率近几年获得了飞速的发展,为应对越发紧缩的市场环境,响应用户端需求的升级变化,工程机械行业正呈现出制造业服务化趋势,即以产品制造商向解决方案提供商转变,从单纯的生产加工向提供设备运营维护、支撑业务管理决策、满足个性化定制需求等服务环节延伸,增加产品附加价值,塑造企业综合优势。

 

 工程机械行业工业互联网平台应用场景及实践

(一)设备预测性维护

 

工程机械行业基于工业互联网平台的建模仿真、数据分析、评估诊断能力,有效评估设备健康水平,实现预测性维护。

 

一是设备状态监测。实时采集温度、电压、电流等数据,提高设备状态洞察力,避免机械设备突发故障。

 

二是设备建模仿真。构建设备数字孪生体,通过输入参数、工况等数据,进行模拟仿真,优化维护方案。

 

三是设备故障诊断。对设备工作日志、历史故障、运行轨迹、实时位置等海量数据进行挖掘分析,判断可能出现故障的时间和部位,安排维修计划。

 

例如,卡特彼勒基于Uptake开发的设备联网和分析系统,采集设备的各类数据信息,联网监控,分析预测设备可能发生的故障,实现了300多万台运转设备的统一管控。日立基于lumada工业互联网平台推出consiteoil解决方案,通过传感器将远程的故障预警率提高到58%。徐工集团基于汉云工业互联网平台,为每一台设备做数字画像,将可能损坏的零部件进行提前更换,使设备故障率降低一半。

 

(二)备品备件管理

 

备品备件的管理一直以来都是工程机械行业不可忽视的重要部分,基于工业互联网平台,可以有效促进企业备品备件管理迈向智能化。

 

一是备品备件标识管理。以物联网技术连接备品备件,运用标签化管理、智能化检索等手段实现备品备件的监督、跟踪和协调。

 

二是备品备件部门协同。基于工业互联网平台,打通各部门信息壁垒,推动跨部门协作,促进备品备件高效流通。

 

三是备品备件供应链管理。建立零部件供应商对接交流平台,在保障生产和维修需求的前提下,实时、定量采购,降低库存量,节约现金流。

 

例如,徐工集团基于汉云工业互联网平台,实现备品备件的计划、采购、库存、供销、追溯功能一体化,通过大数据分析持续优化备品备件管理体系,打破生产商和分销商信息孤岛,提升分拣效率8%,提升仓库利用率6%,降低备件库存8%,提高库存周转率5%。

 

(三)智慧施工

 

工程机械行业正从设备本身的解决方案向现场的解决方案转变,将机器和工人连接,优化施工方案,辅助操作施工,实现智慧施工。

 

一是现场施工数据采集。通过传感器、无人机、三维扫描仪等方式对施工对象、施工场景、外在环境等因素进行高精度感知,掌握现场施工状态。

 

二是施工方案模拟仿真。建立虚实映射的数字孪生体,输入设立不同的施工条件,进行工况模拟迭代,不断优化施工方案。

 

三是现场施工现场指挥调度。建立反馈响应系统,根据设备动态变化,实时修正、调整施工方案并指挥现场施工。

 

例如,小松提出和实施smart construction即智能施工解决方案。通过无人机+边缘盒子+小松云,聚焦高精度测量、设计图和测量图对比(Skycatch)、小松云模拟确定施工计划、施工可视化等环节,实现了建筑工程状态感知、实施分析、科学决策、精准执行的闭环,从而实现远程操作服务。

 

(四)互联网金融

 

基于工业互联网平台实现工程机械设备的深刻洞察、设备故障精准预测、事故风险有效评估,促进基于平台的产融模式创新。

 

一是在线贷款。银行、金融机构通过线上平台监测施工队作业情况、承包商贷款情况和经营情况,针对性给与贷款、融资等服务。

 

二是融资租赁。工程机械企业依托独立运作、与银行合作、与融资公司合作等方式,开始租赁业务。加快资金的流通,降低融资成本,缓解资金压力,帮助中小企业迅速做大规模。

 

三是精准投保。保险公司依托工业互联网平台对机械设备的监测、管理能力,综合评估工程机械设备施工风险,从而实现针对性投保、按需投保、精准投保等保险服务。

 

例如,中联重科成立融资租赁公司,实现了设备的扩大销售,获得的营业额将占集团总收入的20%以上。三一集团基于树根互联根云工业互联网平台,通过融资租赁或者经营性租赁运营超过50%的设备,每年管理超300亿的在外货款;同时与久隆、三湘银行展开合作,开发用于精准定价与风险选择的数据产品,帮助久隆保险完成UBI保险产品及延保产品的定价。

 

 推进应用场景落地的着力点

(一)关注数据采集,扩展信息获取渠道

 

 

一是加强施工现场数据采集,通过传感器、无人机,摄像头、三维扫描仪等感知设备,采集现场施工环境和施工对象信息。二是加强设备端数据采集,基于平台采集和整合工程机械设备设计数据、运行数据、运维档案和地理位置等数据,实现对机械设备的深刻洞察。三是加强客户端数据采集,采集客户需求、反馈等数据信息,形成对市场的理解和认识。

 

(二)紧扣模型开发,提高模型供给能力

 

一是面向业务运营管理,构建资源调度模型、安全管理模型、供应链管理模型等,实现管理优化。二是面向设备远程运维,构建状态监测模型、预测预警模型、健康评估模型、故障诊断模型等,实现机械设备智能化运维。三是面向生产制造,构建加工工艺模型、质量管控模型、组装装配模型等,提高生产质量和效率。

 

(三)聚焦解决方案,开发推广典型应用

 

一是设备智能运维解决方案,基于平台的数据沉淀和模型应用,开发部署运行监测与分析工业APP,提供智能运维解决方案。二是现场施工解决方案,实时监控现场施工设备运行状态,基于工业互联网平台大数据分析能力,提供现场施工解决方案。三是供应链管理解决方案,依托工业互联网平台开发集中采购、供应商管理、柔性供应链、智能仓储、智慧物流等云化应用服务。

 

(四)深化服务能力,加强企业综合实力

 

一是进行反馈式设计,发挥机械设备在制造和使用过程中获得的数据、经验和智慧,返回到产品设计中,促进产品设计迭代式创新。二是进行柔性化生产改造,对产品按照其功能进行划分而进行模块化设计,内部实现零部件的标准化、通用化,采用多功能机械手,实现了多品种生产组装的快速切换。三是开展精益化管理,有效整合备品备件、机械设备、生产线、供应链、客户端信息,优化管理模式,提高产业链协同能力。

 

(五)拓展商业模式,加快数字转型步伐

 

是实施平台化战略,搭建工业互联网平台,汇聚产业链上下游优势资源,对接优质客户、供应商、经销商开展商业合作。二是开展服务型制造,探索基于产品研发设计的增值服务、基于产品效能提升的增值服务、基于产品交易便捷化的增值服务、基于产品集成整合的增值服务以及从基于产品的服务到基于需求的服务。三是开展产业链金融创新,积极对接金融机构、保险公司、银行等,共同开发金融产品,提高金融服务能力。

 

 | 赛迪智库信软所工业互联网研究室 孙刚 

相关新闻

版权声明

1、凡本网注明“来源:中国轻工业网” 的作品,版权均属于中国轻工业网,未经本网授权,任何单位及个人不得转载、摘编或以其它方式使用。已经本网授权使用作品的,应在授权范围内使用,并注明“来源:中国轻工业网”。违反上述声明者,本网将追究其相关法律责任。
2、凡本网注明 “来源:XXX(非中国轻工业网)” 的作品,均转载自其它媒体,转载目的在于信息之传播,并不代表本网赞同其观点和对其真实性负责。
3、如因作品内容、版权和其它问题需要同本网联系的,请于转载之日起30日内进行。
4、免责声明:本站信息及数据均为非营利用途,转载文章版权归信息来源网站或原作者所有。

返回顶部
Baidu
map